Пятница, 03.05.2024, 06:36 Приветствую Вас Гость

Электрический мир

Главная | Регистрация | Вход | RSS

Главная страница




Электри́чество — понятие, выражающее свойства и явления, обусловленные структурой физических тел и процессов, сущностью которой является движение и взаимодействие микроскопических заряженных частиц вещества (электронов, ионов, молекул, их комплексов и т. п.).

                                                                                                                                         

История


Впервые на электрический заряд обратил внимание Фалес Милетский за 600 лет до н. э. Он обнаружил, что янтарь, потёртый о шерсть, приобретает свойства притягивать легкие предметы (пушинки, кусочки бумаги).


Позже это использовалось для чистки от пыли одежды, для которой было критично любое повреждение краски. Считалось, что таким свойством обладает только янтарь.


Но только после становления физики как экспериментальной науки, заложенной Галилео Галилеем, это явление стало изучаться как средство для исследования и использования свойств физических тел.


Термин «электричество» (англ. electricity) введён английским естествоиспытателем, лейб-медиком королевы Елизаветы Тюдор Уильямом Гилбертом в его сочинении «О магните, магнитных телах и о большом магните — Земле» (1600 год), в котором объясняется действие магнитного компаса и описываются некоторые опыты с наэлектризованными телами. Он установил, что свойством наэлектризовываться обладают и другие вещества. Название «электричество» происходит от др.-греч. ἤλεκτρον — «янтарь».


В середине XVII века Отто фон Герике разработал электростатическую машину трения. Кроме того, им было обнаружено свойство электрического отталкивания однополярно заряженных предметов.


В 1729 г. английский учёный Стивен Грей обнаружил разделение тел на проводники электрического тока и изоляторы[1].


Вскоре его коллега Роберт Симмер, наблюдая за электризацией своих шёлковых чулок, пришёл к выводу, что электрические явления обусловлены тем, что электричество представлено двумя взаимодополняющими субстанциями, свойства которых стали обозначать понятием «заряд», различая положительный и отрицательный заряд тел. Данные субстанции разделяются при трении тел друг о друга, что и вызывает электризацию этих тел, то есть электризация — это накопление на теле заряда одного типа, причём заряды одного знака отталкиваются, а заряды разного знака притягиваются друг к другу и компенсируются при соединении, делая тело нейтральным (незаряженным).


К тем же выводам пришёл в 1729 г. Шарль Дюфе. Он установил, что существует два рода зарядов. Опыты, проведённые Дюфе, говорили, что один из зарядов образуется при трении стекла о шёлк, а другой — при трении смолы о шерсть. Поэтому Дюфе назвал заряды «стеклянным» и «смоляным».


Понятие о положительном и отрицательном заряде ввёл немецкий естествоиспытатель Георг Кристоф Лихтенберг, по версии США Бенджамин Франклин, который также обнаружил электрическую природу молний (атмосферное электричество) и изобрёл молниеотвод.


Первая теоретическая работа с попыткой теоретически объяснить электрические явления, была написана американским физиком Б. Франклином в 1747 г. Он предположил существование электрической жидкости (флюида), которая входит в качестве составной части во всякую материю. Наличие двух видов электричества он связывал с существованием двух типов жидкостей — «положительной» и «отрицательной». Обнаружив, что при трении друг о друга стекло и шелк электризуются по-разному, Франклин сделал вывод, что положительные и отрицательные заряды появляются одновременно и в равных количествах. Теория Франклина предполагала одновременное существование трех физических сущностей — материи, положительной и отрицательной электрических жидкостей. Электричество у Франклина существовало независимо от материи. Именно Франклин первым высказал важнейшее предположение об атомарной, зернистой природе электричества: «Электрическая материя состоит из частичек, которые должны быть чрезвычайно мелкими»


М. В. Ломоносов предположил существование «нечувствительной материи вне электризованного тела, которая и производит это действие», предугадав тем самым современное понятие электрического поля.


В 1745 г. был создан первый электрический конденсатор — Лейденская банка. Гальвани открыл биологические эффекты электричества.


Первым количественным исследованием был закон взаимодействия зарядов, экспериментально установленный в 1785 г. Шарлем Кулоном с помощью разработанных им чувствительных крутильных весов: , где q1 и q2 электрические заряды, r — расстояние между ними, F — сила взаимодействия между зарядами, k — коэффициент пропорциональности. Это открытие поставило науку об электричестве в ранг точных дисциплин, в которых можно применять математические методы


Итальянский ученый Вольта в 1800 г. изобрёл первый источник постоянного тока — гальванический элемент, разрешив тем самым многовековые трудности в исследовании электричества. Это был столб из цинковых и серебряных кружочков, разделенных смоченной в подсоленной воде бумагой.


В 1802 г. Василий Петров обнаружил вольтову дугу. Работы Джоуля, Ленца, Ома по изучению электрического тока. Гаусс формулирует основную теорему теории электростатического поля (1830).


Фарадей открывает электромагнитную индукцию (1831) и законы электролиза (1834), вводит понятие электрического и магнитного полей. Анализ явления электролиза привел Фарадея к мысли, что носителем электрических сил являются не какие-либо электрические жидкости, а атомы — частицы материи. «Атомы материи каким-то образом одарены электрическими силами» — утверждает он. Фарадеевские исследования электролиза сыграли принципиальную роль в становлении электронной теории.


Объединение электричества и магнетизма


В 1820 год норвежский физик Эрстед на опыте обнаружил электромагнитное взаимодействие. Замыкая и размыкая цепь с током, он увидел колебания стрелки компаса, расположенной вблизи проводника. Впервые два, казалось бы, соверешенно различных явления оказываются связанными друг с другом.


Французский физик Ампер установил, что связь электричества и магнетизма наблюдается только в случае электрического тока (движущегося электричества) и отсутствует в случае статического электричества в 1821 год.


Опираясь на исследования Эрстеда и Ампера, Фарадей открывает явление электромагнитной индукции в 1831 год и создает на его основе первый в мире генератор электроэнергии, вдвигая в катушку намагниченный сердечник и фиксируя возникновение тока в витках катушки. Фарадей создал и первый в мире электродвигатель — проволочка с током, вращающаяся вокруг магнита. Электричество и магнетизм в результате этих исследований были объединены в новую область науки — электромагнетизм.


Уравнения Максвелла


Венцом исследований электромагнетизма явилась разработка английским физиком Д. К. Максвеллом теории электромагнитных явлений. Он вывел уравнения, связывающие воедино электрические и магнитные характеристики поля в 1873 год. Они имеют громадное значение для науки и практики, как основы расчета электромагнитных явлений.


Именно анализ уравнений Максвелла послужил одной из исходных точек для А. Эйнштейна в 1905 год при разработке специальной теории относительности.


Практические применения уравнений Максвелла


Д. А. Лачинов показал условия передачи электроэнергии на большие расстояния (1880 год). Герц экспериментально регистрирует электромагнитные волны (1888 год). Электротехническая революция — создание электрических батарей, электромагнитов, электрического освещения, телеграфа, телефона, прокладка трансатлантического кабеля, электродвигателей, электрогенераторов и электротранспорта (трамвай, троллейбус, метро).


Таким образом сложилась электрическая теория вещества, согласно которой физические тела представляют собой комплексы взаимодействующих частиц, имеющих электрические заряды, и многие свойства физических тел определяются и могут быть описаны с помощью законов, математическими соотношениями количественно выражающих их взаимодействие и движение. Это было экспериментально подтверждено многими опытами, в том числе открытием Джозефом Томсоном (получившим за это титул лорда Кельвина) в 1897 году носителя отрицательного заряда — частицы, получившей название «электрон», и исследованием структуры атома Эрнстом Резерфордом (получившим за это титул лорда Нельсона), Фредериком Содди и другими учёными.


В XX веке была создана теория Квантовой электродинамики.


В настоящее время электрическая концепция вещества является главной парадигмой физики и позволяет предсказывать и формировать необходимые на практике свойства физических тел и процессов (например, передачи информации или уничтожения промышленных центров неприятеля). В быту электрические явления получили повсеместное распространение, главным образом как средство генерации, передачи и применения энергии (электрические двигатели, электрическое освещение и т. п.) или информации (телефон, радио, телевидение, электронное фото) — то есть, для изменения энтропии (разупорядоченности) среды обитания человека.


Объединение электрического и слабого взаимодействий


В 1967 год был сделан очередной шаг на пути изучения электричества. С. Вайнберг, А. Салам и Ш. Глэшоу постороили объединенную теорию электрослабых воздействий.


Электричество в биологии


Для процессов в нервной системе человека и животных решающее значение имеет зависимость пропускной способности клеточной мембраны для ионов натрия от потенциала внутриклеточной среды. После повышения напряжения на клеточной мембране натриевый канал открывается на время порядка 0,1 - 1,0 мс., что приводит к скачкообразному росту напряжения, затем разность потенциалов на мембране снова возвращается к своему первоначальному значению. Описанный процесс кратко называется нервным импульсом. В нервной системе животных и человека информацию от одной клетки к другой передают нервные импульсы возбуждения длительностью около 1 мс. Нервное волокно представляет собой цилиндр, наполненный электролитом. Сигнал возбуждения передается без уменьшения апмлитуды вследствие эффекта кратковременного увеличения проницаемости мембраны для ионов натрия.


Многие рыбы используют электричество для защиты и поиска добычи под водой. Разряды напряжения южноамериканского электрического угря могут достигать величины напряжения в 500 Вольт. Мощность разрядов электрического ската может достигать 0,5 кВт. Акулы, миноги, некоторые сомообразные используют электричество для поиска добычи. Электрический орган рыб работает с частотой несколько сотен герц и создает напряжение в несколько вольт. Электрическое поле улавливается электрорецепторами. Находящиеся в воде предметы искажают электрическое поле. По этим искажениям рыбы легко ориентируются в мутной воде.

  •                                                
Форма входа
Поиск
Друзья сайта
  • Официальный блог
  • Сообщество uCoz
  • FAQ по системе
  • Инструкции для uCoz
  • Статистика

    Онлайн всего: 1
    Гостей: 1
    Пользователей: 0